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Motivation (I)
• High-aspect ratio triangular/tetrahedral elements are 

generally avoided in the near-wall region by CFD researchers 
– Reduced accuracy of gradients 
– Causes Numerical instability 
– Prismatic/Quadrilateral elements can replace high-aspect 

ratio tetrahedral/triangular elements in the near-wall region 
✦ Mesh generation becomes complicated (compared to generation 

of pure triangles/tetrahedrons) 

• To achieve maximal accuracy, efficiency and robustness, 
triangular/tetrahedral elements are mandatory grid building 
blocks for the space-time conservation and solution element 
(CESE) method

3AIAA CFD Conference, 2017



Motivation (II)
With requirements of the CESE method in mind, 

Primary Objective:

Develop a rigorous mathematical framework that 
identifies the reason behind the difficulties in use 
of high-aspect ratio triangular/tetrahedral mesh 
elements and thereby, help overcome the 
difficulty. 
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Key Outcomes
• Accuracy deterioration of gradient computations involving triangular 

elements is tied to the elements shape factor
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• Degree of accuracy deterioration in gradient computation increases 
monotonically as the value of γ decreases monotonically from its 
maximal value of 9/4 (attained only by an equilateral triangle) to its 
minimal limit value of 0+  (approached only a high obtuse triangle) 

• Independent of its aspect ratio, the shape factor of right-angled 
triangle has a value of 2, very close to the maximal value of 9/4.  
Hence a grid built from high-aspect ratio right-angled triangles is 
much better for accurate computations of gradients than that built 
from high-aspect-rato and highly obtuse triangles 

• Preliminary extensions to 3D

�
def
= sin2 ↵1 + sin2 ↵2 + sin2 ↵3

↵1,↵2 and ↵3 = internal angles of the element



Aspect Ratio of Triangle (I)

Aspect ratio = maximum ratio of edge length to the altitude 
associated with it
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Area A(�P1P2P3) > 0

For each k = 1, 2, 3

↵k = Internal angle associated with vertex Pk

lk = Length of the side facing vertex Pk

hk = Length of the altitude originating from vertex Pk

⇡ > ↵1,↵2,↵3 > 0 and ↵1 + ↵2 + ↵3 = ⇡

lk > 0, hk > 0, and A =
1

2
lk.hk > 0, k = 1, 2, 3

• It can also be shown that, the largest side is always associated with the 
shortest altitude 

• This definition is also applicable to highly obtuse triangles (usual 
definition of aspect ratio being ratio of lengths of longest and shortest 
side doesn’t work for such triangles) 

⌘
def
= max{ l1

h1
, l2
h2
, l3
h3
} > 0



Aspect Ratio of Triangle (II)
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Aspect ratio η  

• Attains its minimal value when the triangle is equilateral 

• Attains a large value when one of the internal angles of the 
triangle has a very small value

(i) ⌘ � ⌘min
def
=

2p
3

(ii) ⌘ = ⌘min if and only if ↵1 = ↵2 = ↵3 =

⇡

3

(iii) lim

min(↵1,↵2,↵3)!0+
⌘ = +1

and (iv) ⌘ � 1 if and only if min{↵1,↵2,↵3} ⌧ 1



Shape Factor of a Triangle
Shape factor, γ, of a triangle is defined as  
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• Shape factor of a high aspect ratio right-angled triangle (γ = 2) 
not far from that of an equilateral triangle (γ =9//4)

�
def
= sin2 ↵1 + sin2 ↵2 + sin2 ↵3

It can be shown that:
(i) 0 < �  9

4

(ii) � = �
max

def
=

9

4

, ↵1 = ↵2 = ↵3 =

⇡

3

, l1 = l2 = l3 > 0

(iii) � ! 0

+ , max{↵1,↵2,↵3} ! ⇡� , min{↵1,↵2,↵3} ! 0

+ ) ⌘ ! +1

and (iv) if one of {↵1,↵2,↵3} =

⇡

2

) � = 2 (even if one of {↵1,↵2,↵3} ⌧ 1 and thus ⌘ � 1)

Note:

, means “if and only if”

) means “implies that”



Aspect Ratio and Shape Factor of a Triangle
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(a) ⌘ � 1 and � ⌧ 1 (b) ⌘ � 1 and � ⇡ 2

•Both triangles shown above have high aspect ratios (η), 
because one of their internal angles is very small ( << 1) 

- But their shape factors (γ) are vastly different 
•Because the value of α1 is close to π and therefore α2, α3 << 1, 

the triangle depicted in left (a) has a high aspect ratio, and is 
also highly obtuse and thus has a very  small value of shape 
factor 

- Accuracy of gradient computation from this triangle will be 
poor in comparison to the one from right (b) 

P1 

P3 P2 
↵1↵2 ↵3

↵1
↵2 ↵3

P1 

P3 
P2 

0 < ⇡ � ↵1 ⌧ 1 and 0 < ↵2,↵3 ⌧ 1 ↵1 ⇡ ↵3 ⇡ ⇡/2 and 0 < ↵2 ⌧ 1



Gradient Vector and Directional Derivatives
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A(�P1P2P3) = |�|/2 > 0

where,

�

def
=

����
x2 � x1 y2 � y1

x3 � x1 y3 � y1

����

= (x2 � x1)(y3 � y1)� (x3 � x1)(y2 � y1) 6= 0

For each k = 1, 2, 3, let

(i) �k be a scalar value assigned to the spatial point Pk,

and

(ii)

ˆ

Pk denote a point in the x� y � � space with

coordinates (xk, yk,�k).



Gradient Vector and Directional Derivatives (II)
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It can be shown that points

ˆ

P1,
ˆ

P2, and

ˆ

P3 lie on

the plane in the x� y � � space defined by

� = ax+ by + c

a =

����
�2 � �1 y2 � y1

�3 � �1 y3 � y1

����
�

, b =

����
x2 � x1 �2 � �1

x3 � x1 �3 � �1

����
�

, and c =

������

x1 y1 �1

x2 y2 �2

x3 y3 �3

������
�

where, 

Thus the x� and y� components of

~r� on the plane � are

⌫

x

def
=

@�

@x

= a and ⌫

y

def
=

@�

@y

= b (on �)

respectively.



Gradient Vector and Directional Derivatives (III)
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l1
l2

l3P1 

P3 

P2 

Given any two vertices Pi and Pj , the directional derivative µi,j

along

����!
Pk1Pk2 is defined by

µi,j
def
=

�j � �i

si,j
, i 6= j and i, j = 1, 2, 3

where,

si,j
def
=

���
��!
PiPj

��� =
q
(xj � xi)

2
+ (yj � yi)

2
> 0, i 6= j and i, j = 1, 2, 3

we have

l1 = s2,3 = s3,2, l2 = s3,1 = s1,3 and l3 = s1,2 = s2,1

and

�µ2,1 = µ1,2 =
�2 � �1

l3
, �µ3,2 = µ2,3 =

�3 � �2

l1
and � µ1,3 = µ3,1 =

�1 � �3

l2



Gradient Vector and Directional Derivatives (IV)
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From earlier equations, we have

l3 · µ1,2 + l1 · µ2,3 + l2 · µ3,1 = 0

and

µ2,1 + µ1,2 = µ3,2 + µ2,3 = µ1,3 + µ3,1 = 0

• Six directional derivatives of φ are linked by four 
independent conditions 

• Any one of them can be determined in terms of any two 
independent directional derivatives associated with two 
different sides of  �P1P2P3



Gradient Vector and Directional Derivatives (V)

14AIAA CFD Conference, 2017

(i) For each k = 1, 2, 3, let ��

k

denote the variation (or numerical error) of �

k

at some given time level introduced through a time-marching procedure.

(ii) Let �⌫

x

and �⌫

y

denote the variations of ⌫

x

and ⌫

y

(x� and y�
components of

~r�) induced by the presence of ��

k

, k = 1, 2, 3.

�⌫

x

=

����
��2 ���1 y2 � y1

��3 ���1 y3 � y1

����
�

and �⌫

y

=

����
x2 � x1 ��2 ���1

x3 � x1 ��3 ���1

����
�

(iii) For any pair of i and j with i 6= j and i, j = 1, 2, 3, let �µi,j denote the

error of µi,j induced by the presence of ��i and ��j , respectively.

Then,

��µj,i = �µi,j =
��j ���i

si,j

l3 ·�µ1,2 + l1 ·�µ2,3 + l2 ·�µ3,1 = 0

and
�µ2,1 +�µ1,2 = �µ3,2 +�µ2,3 = �µ1,3 +�µ3,1 = 0



Gradient Vector and Directional Derivatives (VI)
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Moreover, with the use of law of sines,

(sin↵1) ✏1 + (sin↵2) ✏2 + (sin↵3) ✏3 = 0

The above equation links the errors ✏1, ✏2 and ✏3 of the directional derivatives

evaluated along the three sides of �P1P2P3

Let,

✏1
def
= �µ2,3, ✏2

def
= �µ3,1 and ✏3

def
= �µ1,2

Then, it can be shown that:

(i) l1 · ✏1 + l2 · ✏2 + l3 · ✏3 = 0

and

(ii) For any pair of i and j with i 6= j and i, j = 1, 2, 3, �µi,j can be uniquely

determined in terms of any two of ✏1, ✏2, ✏3 assuming (xk, yk), k = 1, 2, 3 are

given.



Error Amplification Factor (I)
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Let

R
def
=

s
[(�⌫

x

)

2
+ (�⌫

y

)

2
]/2

[(✏1)2 + (✏2)2 + (✏3)2]/3
� 0 [(✏1)

2
+ (✏2)

2
+ (✏3)

2 6= 0]

(i) By definition, R is square root of the ratio of the two simple averages, i.e.,

the simple average of (�⌫
x

)

2
and (�⌫

y

)

2
, and that of (✏1)2, (✏2)2 and (✏3)2

(ii)

p
[(�⌫

x

)

2
+ (�⌫

y

)

2
]/2 = error norm associated with evaluation of

~r�

(iii)

p
[(✏1)2 + (✏2)2 + (✏3)2]/3 = error norm associated with evaluation of

directional derivatives along the three sides of �P1P2P3

(iv)As such R is an error amplification factor, measuring how large

the error norm for evaluating the gradient vector

~r� is amplified

from that for evaluating the directional derivatives along the three

sides of �P1P2P3



Error Amplification Factor (II)
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(i) The value of R is a function of any two chosen independent parameters (say

✏1 and ✏2) among ✏1, ✏2 and ✏3.

(ii)

p
��(�)  R 

p
�+(�), 0 < �  9/4

where,

�±(�)
def
=

3
4�

h
3± 2

p
(9/4)� �

i
, 0 < �  9/4

and (iii) Each of the two bounds

p
��(�) and

p
�+(�) can be attained

by R with some special ratio between ✏1 and ✏2.

Thus

p
��(�) and

p
�+(�) are the greatest lower bound and the least

upper bound of R, respectively.

Note: � is the shape factor of �P1P2P3
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Properties of ��(�) and �+(�) and Their Implications

As the value of � decreases from its maximal value 9/4 to its minimal limit 0

+
,

(i) the value of �+(�) increases monotonically from 1 to +1,

and

(ii) the value of ��(�) decreases monotonically from 1 to (

1
2 )

+
.

As such one can show that :

(i) ��(�) = 1 , �+(�) = 1 , � =

9
4 , �P1P2P3 is equilateral

(ii)

1
2 < ��(�) < 1 < �+(�), if 0 < � <

9
4

(iii) ��(�) ! (

1
2 )

+ , �+(�) ! +1 , � ! 0

+ , max{↵1,↵2,↵3} ! ⇡

�

and

(iv) max{↵1,↵2,↵3} =

⇡
2 ) � = 2 )

p
�+(�) =

q
3
2 ⇡ 1.225
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Properties of ��(�) and �+(�) and Their Implications

P1 

P3 P2 
↵1↵2 ↵3

↵1
↵2 ↵3

P1 

P3 
P2 

0 < ⇡ � ↵1 ⌧ 1 and 0 < ↵2,↵3 ⌧ 1 ↵1 ⇡ ↵3 ⇡ ⇡/2 and 0 < ↵2 ⌧ 1

(b) �P1P2P3 is not obtuse with

⌘ � 1 and � ⇡ 2
(a) �P1P2P3 is highly obtuse with

⌘ � 1 and � ⌧ 1

(i) R = 1 for any (✏1, ✏2, ✏3), i.e., no amplification error for gradient
computation, if and only if �P1P2P3 is equilateral

(ii) A very large error amplification for evaluating ~r� could occur if
�P1P2P3 is highly obtuse

(iii) Only minor error amplification for evaluating ~r� would occur if
�P1P2P3 is nearly a right-angled triangle



Extension to 3D (for tetrahedrons)
• Mathematical framework presented here for triangles can be extended in 

a straightforward manner for tetrahedral elements. 
– Algebra becomes complicated 

• For a regular tetrahedron (i.e., one with all four of its faces being 
equilateral triangles), it can be shown that R =1 for all possible 
combinations of the numerical errors associated with the directional 
derivatives evaluated along all six edge-directions of the tetrahedron 

– No accuracy deterioration in gradient evaluation for a regular 
tetrahedron 

• For a tetrahedron in which three right internal angles share a common 
vertex, it can be shown that the least upper bound of R is     , a number 
slightly larger than 1.  

– Mild accuracy deterioration in gradient evaluation
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Numerical Results from CESE



Propagation of plane acoustic wave 

No attempt to control 
dissipation/CFL 
variation

• Acoustic wave sent through a 
viscous-type mesh with non-
uniform spacing 

• Preserving the phase and amplitude 
of the wave without damping on a 
non-uniform mesh is challenging 

• Largest Aspect-ratio location: 
bottom of the domain =225 

• The time-accurate local time 
stepping procedures, along with 
ability to minimize dissipation in 
CESE helps with this.
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RANS computations of Mach 2 flow over adiabatic flat plate

Coefft of skin-friction along plate 

 

y+ = normalized wall distance  = y * u_tau / kinematic viscosity  
u + = normalized velocity = u/ u_tau 
u_tau = friction velocity = sqrt( Shear stress at wall/density)

Velocity profile comparison at a location where 
Re (based on momentum thickness) =10,000 

• Mach 2 freestream, Re =15x106, Adiabatic Wall 
• Reynolds-Averaged Navier-Stokes (RANS) 

computations  
• Spalart-Allmaras (SA) and Mentor’s Shear-stress 

transport (SST) models 
• Triangular Mesh (105,000 elements) with highest 

aspect ratio of 3000. 
• Mesh  (the structured mesh was sliced into 

triangles)  and comparison data obtained from 
NASA Langley turbulence modeling resource 
website
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Pressure coefft

heat transfer 
coefft
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• Mach 11.3 Laminar flow 
• CUBRC experiment (Run 35)  

• 313,000 Triangular elements, Max aspect ratio: 1400 
• Triangular/tetrahedral elements traditionally avoided 

in hypersonic computations (carbuncle, poor heat-
transfer prediction) 

• Separation bubbles around the two corners and heat 
transfer coefft predicted well. 

• Small discrepancy in heat transfer peak levels being 
investigated upon through grid refinement

Hypersonic flow over a 15° − 25° double cone 



Summary
• Discussion on fundamental accuracy issues when a mesh with large-

aspect -ratio triangular/tetrahedral elements are used in CFD simulations, 
especially inside the boundary layer. 

• Sources of inaccuracy related to triangular grids was identified 
theoretically 

– closely related to the elements shape factor (and not simply aspect ratio) 
– deterioration in accuracy of gradient evaluation can be mitigated by use of 

right-angle / equilateral triangles for gradient evaluation 

• Effectiveness of CESE in handling high-aspect ratio triangular meshes 
demonstrated through a few viscous flow computations 

- Gradient evaluation procedure take advantage of the analysis shown and 
utilize triangles with good shape factors for gradient evaluation 

• Extension of mathematical framework to tetrahedral elements is in 
progress. 

25AIAA CFD Conference, 2017



Backup Slides



Original approach of evaluating derivatives in CESE
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Original approach of evaluating derivatives in CESE

Triangles with bad shape factor that are used in gradient 
computations



New edge-based derivative approach

Triangles with good shape factors to be used in gradient 
computations, obtained by adjusting stencil (can also be 
used to adjust dissipation)


